			INDIAN SCHOOL AL WADI AL KABIR Class XII, Mathematics Worksheet 3 Matrices \& Determinants 28-08-2022					
Q.1.	Total number of possible matrices of order 3×3 with each entry 2 or 0 is							
	A	9	B	27	C	81	D	512
Q.2.	Which of he given values of x and y make the following pair of matrices equ$\left[\begin{array}{cc} 3 x+7 & 5 \\ y+1 & 2-3 x \end{array}\right],\left[\begin{array}{cc} 0 & y-2 \\ 8 & 4 \end{array}\right]$							
	A	$x=\frac{-1}{3}, y=7$		$\mathrm{x}=\frac{-2}{3}, \mathrm{y}=7$	C	$x=\frac{-7}{3}, y=\frac{-2}{3}$	D	Not possible to find
Q.3.	If A and B are two matrices of order 3 xm and 3 xn respectively and $\mathrm{m}=\mathrm{n}$, then the order of Matrix $(5 A-2 B)$ is							
	A	mx 3	B	3 xn	C	$\mathrm{n} \times 3$	D	mxn
Q.4.	Given $\mathrm{A}=\left[\begin{array}{cc}\alpha & \beta \\ \gamma & -\alpha\end{array}\right]$ and $\mathrm{A}^{2}=3 \mathrm{I}$, then							
	A	$1+\alpha^{2}+\beta \gamma=0$	B	$1-\alpha^{2}-\beta \gamma=0$	C	$3-\alpha^{2}-\beta \gamma=0$	D	$3+\alpha^{2}+\beta \gamma=0$
Q.5.	If A and B are square matrices of the same order and $\mathrm{AB}=3 \mathrm{I}$, then A^{-1} is equal to							
	A	3A	B	$\frac{1}{3} \mathrm{~B}$	C	$3 \mathrm{~B}^{-1}$	D	$\frac{1}{3} \mathrm{~B}^{-1}$
Q.6.	If A is an invertible matrix of order 2, then $\operatorname{det}\left(\mathrm{A}^{-1}\right)$ is equal to							
	A	$\operatorname{det}(\mathrm{A})$	B	$\frac{1}{\operatorname{det}(A)}$	C	1	D	0
Q.7.	If A and B are invertible matrices, then which of the following is not correct?							
	A	$\operatorname{adj}(\mathrm{A})=\|A\| \cdot \mathrm{A}^{-1}$	B	${\underset{1}{1}}_{\operatorname{det}(\mathrm{A})^{-1}}=[\operatorname{det}(\mathrm{A})]^{-}$	C	$(\mathrm{AB})^{-1}=\mathrm{B}^{-1} \mathrm{~A}^{-1}$	D	$(A+B)^{-1}=\mathrm{B}^{-1}+\mathrm{A}^{-1}$
	Very short answer type questions							
Q8.	If $\mathrm{x} \in \mathrm{N}$ and $\left\|\begin{array}{cc}x+3 & -2 \\ -3 x & 2 x\end{array}\right\|=8$, then find the value of x							
Q9.	If A is a 3×3 invertible matrix, then what will be the value of k, if $\operatorname{det}\left(A^{-1}\right)=[\operatorname{det}(A)]^{k}$							
Q10.	If A_{ij} is the cofactor of the a_{ij} of the determinant $\left\|\begin{array}{ccc}2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7\end{array}\right\|$, then find a_{32}. A_{32}							

Q11.	If the value of a third order determinant is 12 , then find the value of determinant formed by replacing each element by its co-factor.
	Short answer type questions
Q12.	If $A=\left[\begin{array}{ll}3 & -2 \\ 4 & -2\end{array}\right]$, then find the value of λ so that $A^{2}=\lambda A-2 I$. Hence find A^{-1}
Q13.	Show that $A=\left[\begin{array}{cc}2 & -3 \\ 3 & 4\end{array}\right]$ satisfies the equation $x 2-6 x+17=0$. Hence, find A^{-1}
Q14.	Given, $\mathrm{A}=\left[\begin{array}{cc}2 & -3 \\ -4 & 7\end{array}\right]$, compute C and show that $2 \mathrm{~A}^{-1}=9 \mathrm{I}-\mathrm{A}$
Q15.	If $\mathrm{A}=\left[\begin{array}{cc}1 & \tan x \\ -\tan x & 1\end{array}\right]$, then show that $\mathrm{A}^{\mathrm{T}} \mathrm{A}^{-1}==\left[\begin{array}{cc}\cos 2 x & -\sin 2 x \\ \sin 2 x & \cos 2 x\end{array}\right]$
Q16.	Express the matrix $A=\left[\begin{array}{ccc}2 & 4 & -6 \\ 7 & 3 & 5 \\ 1 & -2 & 4\end{array}\right]$ as the sum of a symmetric and skew-symmetric matrices.
	Long answer type questions
Q17.	If $A=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$, then prove that $A^{2}-4 A-5 I=0$. Hence find A^{-1}
Q18.	If $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 2 \\ 3 & 1 & 1\end{array}\right]$, find A^{-1}. Hence solve the system of equation $x+y+z=6, x+2 z=7$ and $3 x+y+z=12$
Q19.	Use product $\left[\begin{array}{ccc}1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4\end{array}\right]\left[\begin{array}{ccc}-2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2\end{array}\right]$ to solve the system of equation $x+3 z=9$, $-x+2 y-2 z=12$ and $2 x-3 y+4 z=3$
Q20.	If $A=\left[\begin{array}{ccc}2 & 3 & 10 \\ 4 & -6 & 5 \\ 6 & 9 & -20\end{array}\right]$, then find A^{-1}. Using A^{-1} solve the set of equations $\frac{2}{x}+\frac{3}{y}+\frac{10}{z}=2$, $\frac{4}{x}-\frac{6}{y}+\frac{5}{z}=5$ and $\frac{6}{x}+\frac{9}{y}-\frac{20}{z}=-4$.

$\begin{aligned} & \pi \\ & \frac{\Omega}{n} \\ & 8 \\ & \boxed{Z} \\ & Z \end{aligned}$	1.	D					2.	D	D	3		B	4.	C
	5.	B					6.	B	B	7		D	8.	$X=2$
	9.	$\mathrm{K}=-1$					10		10			144	12	$\begin{aligned} & \lambda=1 ; \\ & \mathrm{A}=\left[\begin{array}{cc} -1 & 1 \\ -2 & -3 / 2 \end{array}\right] \end{aligned}$
	13	$A^{-1}=\frac{1}{7}\left[\begin{array}{cc}2 & -1 \\ 1 & 3\end{array}\right]$					14						16	
	17	$\begin{aligned} & \mathrm{A}^{-1}= \\ & \frac{1}{5}\left[\begin{array}{ccc} -3 & 2 & 2 \\ 2 & -3 & 2 \\ 2 & 2 & -3 \end{array}\right] \end{aligned}$					18	$\mathrm{x}=3, \mathrm{y}=1, \mathrm{z}=2$		19		$\begin{aligned} & x=36, y=11, \\ & z=-9 \end{aligned}$	20	$x=2, y=-3, z=2$

